Issues regarding artificial neural network modeling for reactors and fermenters
نویسندگان
چکیده
In recent years researchers in many areas have used arti®cial neural networks (ANNs) to model a variety of physical relationships. While in many cases this selection appears sound and reasonable, one must remember than ANN modeling is an empirical modeling technique (based on data) and is subject to the limitations of such techniques. Poor prediction occurs when the training data set does not contain adequate ``information'' to model a dynamic process. Using data from a simulated continuousstirred tank reactor, this paper illustrates four scenarios: (1) steady state, (2) large process time constant, (3) infrequent sampling, and (4) variable sampling rate. The ®rst scenario is typical of simulation studies while the other three incorporate attributes found in real plant data. For the cases in which ANNs predicted well, linear regression (LR), one of the oldest empirical modeling techniques, predicted equally well, and when LR failed to accurately model/predict the data, ANNs predicted poorly. Since real plant data would resemble a combination of situations (2), (3), and (4), it is important to understand that empirical models are not necessarily appropriate for predictively modeling dynamic processes in practice.
منابع مشابه
Neural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملModeling and Simulation of Water Softening by Nanofiltration Using Artificial Neural Network
An artificial neural network has been used to determine the volume flux and rejections of Ca2+ , Na+ and Cl¯, as a function of transmembrane pressure and concentrations of Ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. The feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidde...
متن کاملComparison between artificial neural network and radiobiological modeling for prediction of thyroid gland complications of after radiotherapy
Introduction: Hypothyroidism is one of the frequent side effects of radiotherapy of head and neck cancers, breast cancer, and Hodgkin's lymphoma. It is recommended to estimate the normal tissue complication probability of thyroid gland using radiobiological modeling during treatment planning. Moreover, the use of artificial neural network is also proposed as a new method for t...
متن کاملDIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999